
 

 

 

  

Auto Count Sdn Bhd 

Learning AutoCount 

Accounting Report 

Designer 
 

Choo, Chin Peng 

2/13/2008 

 



 1 

 

Table of Contents 

1. How to start customizing a report? ..................................................................................... 3 

1.1. Start Report Designer from individual function Design Report menu ................................ 3 

1.2. Start Report Designer from Tools menu ............................................................................. 6 

1.3. Report Designer ................................................................................................................... 9 

1.4. Field List ............................................................................................................................. 10 

1.5. Toolbox Tab ....................................................................................................................... 12 

1.6. Formatting ToolBar ........................................................................................................... 14 

1.7. Panel .................................................................................................................................. 14 

1.7.1. Report Band ....................................................................................................................... 14 

1.7.2. Data Grouping ................................................................................................................... 17 

1.7.3. Report Controls to Data .................................................................................................... 18 

1.7.3.1. Methods for Binding Controls ........................................................................................... 18 

1.7.3.2. Binding Controls on Different Bands ................................................................................. 21 

1.7.4. Smart Tag ........................................................................................................................... 23 

1.7.5. Format String ..................................................................................................................... 25 

1.8. ToolBar .............................................................................................................................. 28 

1.8.1. Save and Load to external file ........................................................................................... 28 

1.8.2. Make Equal ........................................................................................................................ 33 

1.9. Report Explorer ................................................................................................................. 34 

1.10. Property Grid ..................................................................................................................... 37 

1.10.1. CanGrow property ............................................................................................................. 38 

1.10.2. CanShrink property............................................................................................................ 38 

1.10.3. KeepTogether Property ..................................................................................................... 38 

1.10.4. Report Property Grid ......................................................................................................... 40 

1.10.4.1. Paper Kind ................................................................................................................. 41 

1.10.4.2. Landscape.................................................................................................................. 42 

1.10.4.3. Grid Size .................................................................................................................... 44 

1.10.4.4. Margins ..................................................................................................................... 45 

1.10.4.5. Watermark ................................................................................................................ 45 

1.11. Calculating an Automatic Summary .................................................................................. 48 

1.9. Print Preview ..................................................................................................................... 49 

2. Master-Detail Report Using Detail Report Bands .............................................................. 50 

2.1. Detail Report Bands ........................................................................................................... 50 

2.2. Example of Master-Detail Report: Invoice ........................................................................ 52 

3. Scripting ............................................................................................................................. 54 



 2 

3.1. Scripting Overview ............................................................................................................ 54 

3.2. Example. Using Scripts ...................................................................................................... 55 

3.3. GetCurrentColumnValue Method ..................................................................................... 62 

3.4. GetCurrentRow Method .................................................................................................... 65 

3.5. Useful static methods in BCE.AutoCount.Application class .............................................. 67 

3.6. Useful data access methods in BCE.AutoCount.Application.DBSetting object ................. 68 

3.6.1. ExecuteScalar Method ....................................................................................................... 68 

3.6.2. ExecuteNonQuery Method ............................................................................................... 68 

3.6.3. GetFirstDataRow Method ................................................................................................. 68 

3.6.4. GetDataTable Method ....................................................................................................... 69 

3.7. Example 1: Using Scripts to show simple Item Count in Invoice ....................................... 69 

3.8. Example 2: Using Scripts to show Stock Adjustment Quantity in a separate column in 

Stock Card Report .............................................................................................................. 70 

3.9. Example 3: Using Scripts to show Stock Item Picture in Invoice ....................................... 72 

3.10. Example 4: Using Scripts to show an UDF from D/O in Stock Card Report ....................... 74 

4. How To .............................................................................................................................. 76 

4.1. How to make Panasonic KX-P1121 printer able to print to the margin area? .................. 76 

4.2. How to make Panasonic KX-P3624 printer able to print to the margin area? .................. 76 

4.3. How to print custom paper size report? ........................................................................... 76 

4.3.1. Create a custom Report Form ........................................................................................... 76 

4.3.2. Modify AutoCount 2006 Report Paper Size ...................................................................... 77 

4.3.3. Set Custom Paper Name in Report Option ........................................................................ 77 

 

 



 3 

1. How to start customizing a report? 

1.1. Start Report Designer from individual function Design Report menu 

If the system default report cannot fulfill your requirement, you can start redesign or customize 
the report with the built-in Report Designer. You can find a Report menu in the function you 
have selected and under the Report menu, there is a list of sub-menu display such as Design 
Document Style Reports. The following illustrates the Design Document Style Report in Invoice 
List window. 

When you click on the Design Report sub-menu, the system will show a list of system default 
report in a dialog. Choose the system default report you want to modify and click Design 

button to start the Report Designer. 



 

 

Note  

System reports cannot be deleted nor overwritten.

The system will display a 

System reports cannot be deleted nor overwritten. 

a Report Designer page as shown below:- 

4 

 



 5 

 

 
  



 6 

1.2. Start Report Designer from Tools menu 

Alternatively, you can go to Tools | Report Designer navigator to customize your report. 

 

The Report Designer Navigator shows all reports of the system in a hierarchical structure, use 
the left pane Categories to navigate to your report type, then the main pane will show all 
reports belong to this report type. 



 7 

 



 8 

Then click on the Design button to start the Report Designer. 

 

 
 
 



 9 

1.3. Report Designer 

When the Report Designer started, you will see the following window. 

 

The standard Report Designer window basically can be represented by 7 major elements, 
which provide the basic editing capabilities of the report designer. 

 
 Designer 

Elements 
Short Description 

1. Field List Represents the Field List tree in the report designer. This tree shows the 
structure of the data source which is bound to the report currently being 
edited in the End-User Designer, and is used to bind report controls to data. 

2. ToolBox Represents the Toolbox in the report designer. This toolbox contains all the 
report controls and is used to drag and drop new controls onto the report's 
area. 

3. Formatting 
ToolBar 

Represents the Formatting Toolbar in the report designer. It contains some 
default buttons for manipulating text. 

4. Panel The main element in the End-User Designer which allows a report's layout 
to be edited. It contains two rulers, design and an instant preview tab, a 
status panel and the current report's surface, including its bands and 
controls. 

5. ToolBar Represents the Toolbar in the report designer. This tool bar contains 
buttons which provide the ability to save, load, edit report layouts in the 
End-User Designer. 

6. Report 
Explorer 

Represents the Report Explorer tree in the report designer. It shows a 
report's structure in a tree form and provides easy navigation through the 
report. 

7. PropertyGrid Represents the Properties Window in the report designer. This window is 
used to change some of the properties of the report elements (bands and 
controls) by the end-User. 



 10

 
 

1.4. Field List 

The Field List is intended to display the schema of the data source which is currently bound to 
a report. Also, this window may be used to bind existing report controls to data, or to create 
new bound report controls. 

To bind an existing report control, control click the desired field item in the Field List window, 
and then drag and drop it onto the bindable report control. This control will then be bound to 
the selected data field. 

 

To add a new bound report control, simply click the desired field item in the Field List window, 
and then drag and drop it onto the report band. Then, an XRLabel control bound to the 
selected data field will appear. 

 

Another way of creating new bound report controls is to right-click a Field List item, and then 
drag and drop it onto a report. This will invoke the context menu shown in the image below. 
Simply choose the item you need from the list, and the selected control bound to the 
appropriate data field will be created and added to the report. 



 11

 
 
 



 

1.5. Toolbox Tab 

This is a toolbox tabs that contains all the standard report controls which can be inserted into a 
report. To use the toolbox tab, select the report control you need to insert into a report and 
then drop it onto one of the report bands. 

 

Report Control 
Class 

 BarCode  Represents a barcode control, which allows inserting many different 
barcode types into a report. 

 Chart  Represents a chart control, which may be used to represent your data as 
a ser

 CheckBox  Represents a check box control, which is intended to display a True/False 
or Checked/Unchecked/Indeterminate state in a report. 

 Label  Represents a label control. This is the basic control which allows 
inserting single
may be either static, or dynamically populated from a report's 
datasource. 

 Line  Represents a line control, which is intended to draw vertical, horizontal 
or diagonal lines in a report. 

 PageBreak  Represents a page break control. This control serves to mark the place 
where a report should start a new page. Note also that you may use the 
Band.PageBreak
the page just before or after a particular ba

 PageInfo  Represents a control which may be used to display some auxiliary 
information in a report. Use this control to display page numbers, the 
current date or user information in your report. 

 Panel  Represents a panel control which can conta
it to group controls together, to make their manipulation easier. 

 PictureBox  Represents a picture box control that can be used to display an image in 
a report. Use this control to insert images into your report. 

 RichText  Represents a rich text control which is intended to display, enter and 
manipulate formatted text. You can enter and format its text at design 
time, load it from an external file, or bind this control to a data field and 
populate it from a report's dat

 Shape  Represents a shape control which can be used to embed any simple 
graphics into a report 

 Table  Represents a table control for inserting tables, containing rows and cells. 
This control is invaluable if you need to show your data in t

 ZipCode  Represents a zipcode control, which allows the insertion of numbers 
representing a zipcode into a report. 

At design time report controls can be added to a report via the
necessary report control in

 

This is a toolbox tabs that contains all the standard report controls which can be inserted into a 
report. To use the toolbox tab, select the report control you need to insert into a report and 

ne of the report bands.  

Description 

Represents a barcode control, which allows inserting many different 
barcode types into a report.  

Represents a chart control, which may be used to represent your data as 
a series view.  

Represents a check box control, which is intended to display a True/False 
or Checked/Unchecked/Indeterminate state in a report. 

Represents a label control. This is the basic control which allows 
inserting single-line or multi-line text into a report. Note that this text 
may be either static, or dynamically populated from a report's 
datasource.  

Represents a line control, which is intended to draw vertical, horizontal 
or diagonal lines in a report.  

epresents a page break control. This control serves to mark the place 
where a report should start a new page. Note also that you may use the 
Band.PageBreak property instead of this control, if you want to break 
the page just before or after a particular band.  

Represents a control which may be used to display some auxiliary 
information in a report. Use this control to display page numbers, the 
current date or user information in your report.  

Represents a panel control which can contain other report controls. Use 
it to group controls together, to make their manipulation easier. 

Represents a picture box control that can be used to display an image in 
a report. Use this control to insert images into your report. 

Represents a rich text control which is intended to display, enter and 
manipulate formatted text. You can enter and format its text at design 
time, load it from an external file, or bind this control to a data field and 
populate it from a report's datasource.  

Represents a shape control which can be used to embed any simple 
graphics into a report  

Represents a table control for inserting tables, containing rows and cells. 
This control is invaluable if you need to show your data in t

Represents a zipcode control, which allows the insertion of numbers 
representing a zipcode into a report.  

At design time report controls can be added to a report via the toolbox tab
necessary report control in the toolbox tab, and then drag and drop it onto the report.

12

This is a toolbox tabs that contains all the standard report controls which can be inserted into a 
report. To use the toolbox tab, select the report control you need to insert into a report and 

Represents a barcode control, which allows inserting many different 

Represents a chart control, which may be used to represent your data as 

Represents a check box control, which is intended to display a True/False 
or Checked/Unchecked/Indeterminate state in a report.  

Represents a label control. This is the basic control which allows 
line text into a report. Note that this text 

may be either static, or dynamically populated from a report's 

Represents a line control, which is intended to draw vertical, horizontal 

epresents a page break control. This control serves to mark the place 
where a report should start a new page. Note also that you may use the 

property instead of this control, if you want to break 

Represents a control which may be used to display some auxiliary 
information in a report. Use this control to display page numbers, the 

in other report controls. Use 
it to group controls together, to make their manipulation easier.  

Represents a picture box control that can be used to display an image in 
a report. Use this control to insert images into your report.  

Represents a rich text control which is intended to display, enter and 
manipulate formatted text. You can enter and format its text at design 
time, load it from an external file, or bind this control to a data field and 

Represents a shape control which can be used to embed any simple 

Represents a table control for inserting tables, containing rows and cells. 
This control is invaluable if you need to show your data in tabular form.  

Represents a zipcode control, which allows the insertion of numbers 

toolbox tab.  Simply click the 
the toolbox tab, and then drag and drop it onto the report. 



 13

 

Another way of adding report controls to a report at design time is to use the Field List window. 
In this instance, an added report control is automatically bound to the specified data field. 

 
 
 

 

 



 14

1.6. Formatting ToolBar 

 

It contains some default buttons for manipulating text. Example select font type, font size, edit 
text alignment. 

 

1.7. Panel 

Panel contains two rulers, Design , HTML View and an instant Preview tab, a status panel and 
the current report's. 

1.7.1. Report Band 

Report Band represents a specific area on a report design page, which is used to define how 
to render report controls which belong to it. Every band is an instance of the Band class 
descendant. This class provides the Band.Height property which specifies the space that a band 
occupies on a page, along with other specific properties which define a band's behavior. 

In the report designer, report bands are represented by the parts of the design surface divided 
via band strips. 

After you've added a new blank report to a project, by default, it looks as shown in the image 
below. You can insert the band by right click at the report. 

 



 15

 

As you can see, the report's area is divided into three basic bands  

• PageHeader band 

• Detail band 

• PageFooter band 

that provide space for placing different report controls on them. 

A particular band type specifies how the controls located on this band, are rendered, their 
rendering order and how many times they are rendered . Note that in the report designer, 
some of band strips may display tips with information on how bands will be rendered. For 
instance, for the PageHeader and PageFooter bands, the "one band per page" tip is 
displayed. 

Later on, when creating a particular report, you can add or remove these or any other bands. 
There are different band types available in XtraReports, and each individual band is a 
descendant of the Band class. The table below lists them. 

 

Report Band 
Class 

Description 

TopMarginBand  Represents a band located on the top margin of every page.  

ReportHeaderBand  Represents a band used as a report header. Objects placed in this band 

are rendered only once - at the beginning of a report.  

PageHeaderBand  Represents a band located at the beginning of every report page, below 

the TopMarginBand. It is mainly intended to display the header of a 
table, continued from the previous page.  

GroupHeaderBand  Represents a band used to specify grouping criteria and to display 

information at the beginning of a group of records shown in the 
DetailBand. For more information about using this band type, see the 
Data Grouping document.  

DetailBand  Represents a band used to display a single record from the bound 

datasource at a time, or just to hold controls (if there is no bound 
datasource). For more information about data binding, see the Providing 
Data document.  



 16

DetailReportBand  Represents a band used to create a master-detail report (the 
DetailReport band holds the detail report). The master-detail 
relationship for this detail report is specified by the 
XtraReportBase.DataMember property. To learn more about detail 
reports, see the Master-Detail Report Using Detail Report Bands 
document. 

GroupFooterBand  Represents a band used to display controls at the end of a group of 
records shown in the DetailBand.  

ReportFooterBand  Represents a band used as a report footer. Objects placed in this band 
are rendered only once, - at the end of a report.  

PageFooterBand  Represents a band located at the bottom of every report page, above 
the BottomMarginBand. It is mainly intended to display the footer of a 
table, which has been continued on the following page.  

BottomMarginBand  Represents a band located on the bottom margin of every page.  

The following image illustrates the relative positions of different band types, and how many 
times they are rendered in a report. 

 

The PageHeaderBand, PageFooterBand, TopMarginBand and BottomMarginBand bands 
are rendered in the report preview on every page. 

The ReportHeaderBand and ReportFooterBand bands are rendered in the report preview 
only once. 



 17

The GroupHeaderBand and GroupFooterBand bands are rendered for every group of 
records in a report. 

The number of times the DetailBand band is rendered in a report depends upon the number 
of records returned from the bound datasource, - one band per record. 

1.7.2. Data Grouping 

Data grouping can be done by one or more data fields, which are called group fields and 
represented by GroupField objects. When you group data by a single or a few data fields, 

records with identical values in these group fields are arranged into corresponding data groups. 

By right-clicking the report area in the report designer invokes the context menu. Then, add a 
GroupHeader band to the report as is shown in the image below. 

 

Click the GroupFields property item of the created GroupHeader1 band to invoke the 
GroupField Collection editor. 
 

 



 18

As you can see there is already a GroupID inside the fieldname, this mean that the grouping is 
based on the GroupID determined by the user on screen. Click the OK button to close the 
editor. User also can group other data fieldname beside GroupID. 
 

 

Another usage is sorting which is the similar way as grouping; just simply select the SortID 
instead of GroupID.  

1.7.3. Report Controls to Data 

This topic describes how to bind report controls to data fields, introduces the differences 

between binding controls situated on different report bands, and provides design-time and 
runtime samples. Note that report controls can be bound to any existing datasource in a 
report, regardless of whether the report is bound to the data or not. 

 

1.7.3.1. Methods for Binding Controls 

Report controls can be bound to data from any datasource that exists in the report. If the 
report is also bound to the same, then this datasource will be the primary datasource for 
bound controls. It's also possible to bind a report control to a data field in a secondary 
datasource, but in this case you should manually advance the record cursor in the datasource. 
Otherwise it will always display the current record. Note, that if the 
XtraReportBase.DataAdapter property is not specified for the primary datasource, or if a 
secondary datasource is used, you are responsible for populating it with data and advancing its 

record cursor. 

A control can be bound to data by setting the control's bindable properties to the fields in a 
table. Each report control has different bindable properties. Each binding is represented by an 
XRBinding object, and a collection of all the bindings for a control can be accessed via the 
XRControl.DataBindings property. At design time all bindable properties are also shown in the 
(DataBindings) group at the top of the Properties window. The bindable properties of an 
XRLabel control are shown in the picture below. 

 



 19

 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

You can bind a report control to data both at design and runtime. Expand the 
(DataBindings) group in the Properties window. Then click the property item you want to 
bind. This will invoke the same binding editor as the one described above. The image below 
illustrates this process. 

 

Here you can also specify a format for output values. For this purpose simply click the ellipsis 
button in the XRBinding.FormatString property item. 

 



 

 

Note  

The Format String Editor can also be invoked via the Format String context link

It is also very easy to bind an existing report control or to add a new bound control
Field List window. Simply click the desired field item in the 

drop it onto a bindable report control. This control will then be bound to the selected data field. 
Note that in this case the bound property will be 
DefaultBindableProperty

Also, if a field item is dropped onto any band's area in a report a new bound 
appear at the drop point.

 

Note  

You can also create a bound control of a speci
window using the right mouse button. In this case after the item is dropped a context menu containing a list of 

the available report controls that can be created for the item will be displayed.

 

 

The Format String Editor can also be invoked via the Format String context link. 

also very easy to bind an existing report control or to add a new bound control
window. Simply click the desired field item in the Field List window, then drag and 

drop it onto a bindable report control. This control will then be bound to the selected data field. 
Note that in this case the bound property will be the property specified in the control's 
DefaultBindableProperty attribute. 

Also, if a field item is dropped onto any band's area in a report a new bound 
appear at the drop point. 

You can also create a bound control of a specific type by dragging and dropping an item from the 
window using the right mouse button. In this case after the item is dropped a context menu containing a list of 

the available report controls that can be created for the item will be displayed. 

20

also very easy to bind an existing report control or to add a new bound control using the 
window, then drag and 

drop it onto a bindable report control. This control will then be bound to the selected data field. 
the property specified in the control's 

Also, if a field item is dropped onto any band's area in a report a new bound XRLabel object will 

 

fic type by dragging and dropping an item from the Field List 
window using the right mouse button. In this case after the item is dropped a context menu containing a list of 



 21

 

Controls can be unbound at design time. This can be done using the same binding editor by 

selecting the (None) item. 

 

1.7.3.2. Binding Controls on Different Bands 

When binding a report control to a data field the data returned to the control depends on 
which band the bound control is located in. So, if a control is situated in the Detail band, every 
single record in the datasource will be returned and displayed in the control. Bound controls in 
grouping bands show data by dividing all the data into groups. Lastly, bound controls in any 
other bands display data from the record which is current when the band they are in is being 
printed/displayed. For more information about report bands see the Report Bands topic. 

This feature is illustrated in the images below. 

Report Design: 



 22

 

Report preview: 

 
 

 



 23

1.7.4. Smart Tag 

The smart-tag feature enables report controls and bands to display context-sensitive 
information and commands. The smart tag can be thought of as a replacement for designer 
verbs, because you can choose to display a smart tag item in both the smart-tag panel, and in 
the shortcut menu associated with a report control or a band.  

To invoke a smart tag you first need to select any report element, and then to click the smart 
tag icon (  - looks like a right arrow) of the currently selected report element. Then the smart 

tag panel is invoked on the left side of the smart tag icon, thus allowing you or an end-user to 
quickly adjust the selected report element. 

The smart-tag feature is available for the following report elements. 

XtraReport  

A report's smart tag icon is located at the top left corner of a report designer. 

 

Report Bands  

A band's smart tag icon is located on the band strip right next to the caption. For instance, the 
smart tag for the Report Header band is shown in the image below. 

 

The following is the smart tag for the Group Header band. 

 

The following is the smart tag for the Detail band. 



 24

 

Report Controls 

A control's smart tag icon is located at the top right corner of the control. For instance, the 
smart tag for the label is shown in the image below. 

 

The following is the smart tag for the picture box. 

  



 25

The following is the smart tag for the check box. 

 

1.7.5. Format String 

 

Standard Format Strings for Numeric Values  

Standard format strings for numeric values are specified in the Axx format. Here A is a 
character called the format specifier. xx is a sequence of digits called the precision specifier. 
The format specifier denotes whether values should be transformed to currency format, 
scientific notation, etc. This specifier must be set to one of the predefined characters listed in 

the Standard Numeric Format Strings. The table below gives some commonly used values. 

 

Format 
Specifier  

Description  
Sample 

Format String  
Sample 
Output  

c or C  

The number is converted to a string that 

represents a currency amount. The precision 
specifier indicates the desired number of 
decimal places. If the precision specifier is 
omitted, the default currency precision from the 

c2  $1,234.00  



 26

current regional options is used.  

e or E  

The number is converted to a string of the form 

"-d.ddd...E+ddd" or "-d.ddd...e+ddd", where 
each 'd' indicates a digit (0-9). The string starts 
with a minus sign if the number is negative. 
One digit always precedes the decimal point. 
The precision specifier indicates the desired 
number of digits after the decimal point. If the 

precision specifier is omitted, a default of six 
digits after the decimal point is used. The case 
of the format specifier indicates whether to 
prefix the exponent with an 'E' or an 'e'. The 
exponent always consists of a plus or minus 
sign and a minimum of three digits. The 
exponent is padded with zeros to meet this 
minimum, if required.  

E1  1.2E+003  

n or N  

The number is converted to a string of the form 

"-d,ddd,ddd.ddd...", where each 'd' indicates a 
digit (0-9). The string starts with a minus sign 
if the number is negative. Thousand separators 
are inserted between each group of three digits 
to the left of the decimal point. The precision 
specifier indicates the desired number of 
decimal places. If the precision specifier is 
omitted, the default currency precision from the 
current regional options is used.  

n0  1,234  

x or X  

The number is converted to a string of 
hexadecimal digits. The case of the format 
specifier indicates whether uppercase or 
lowercase characters are used for hexadecimal 

digits greater than 9. The precision specifier 
indicates the minimum number of digits in the 
resulting string. If required, the number is 
padded with zeros to its left to produce the 
number of digits given by the precision 
specifier. This format is supported for integral 
types only.  

X8  000004D2  

Standard Format Strings for Date/Time Values  

Standard date and time format strings contain a single character. This character defines the 
pattern used to represent the value (whether and how to display year numbers, month 
numbers, etc). The table below lists the most commonly used format characters.  

 

Format 
Specifier  

Description  Sample Output  

d  Short date pattern.  3/12/2003  

D  Long date pattern.  Wednesday, March 12, 2003  

t  Short time pattern.  12:00 AM  

T  Long time pattern.  12:00:00 AM  

f  Full date/time pattern (short time).  Wednesday, March 12, 2003 12:00 AM  

F  Full date/time pattern (full time).  
Wednesday, March 12, 2003 12:00:00 
AM  

g  General date/time pattern (short 3/12/2003 12:00 AM  



 27

time).  

G  
General date/time pattern (full 
time).  

3/12/2003 12:00:00 AM  

Custom Format Strings for Numeric Values  

Custom format strings are used to construct format patterns manually. You only need to use 
them when the standard format strings do not meet your requirements. All format strings 
represented by a literal character followed by one or two digits are treated as standard format 
strings and so all other strings are interpreted as custom format strings. The table below lists 
the most commonly used characters that can construct a custom format string.  

 

Character Meaning 

0 The digit is always displayed. 

# The digit is displayed only when needed (i.e. use to suppress leading zeros). 

. 
Specifies the position of the decimal point. The appearance of the point depends 
upon the regional settings. 

, 
Specifies the position of a comma. The appearance of the comma depends upon 
the regional settings. 

Note that custom format strings can also contain other characters and they will be copied to 
the formatted string. This can be used to add explanatory text to the value. If you need to 
display one of the reserved characters, it must be preceded by the '\' symbol. 

When formatting numeric values, you can apply different formats to positive, negative and zero 

values. To do this, the format string must contain three parts delimited by semicolons. The first 
part sets the positive values format, the second is applied to negative values and the third 
represents zero values. For example, the custom format strings to display blank when the 
numeric value is 0 is coded as “#,0.00;-#,0.00; ”. Another example, the custom format 
strings to display negative when the numeric value is positive, and to display positive when the 
numeric value is negative is coded as “-#,0.00;#,0.00;”. 

Custom Format Strings for Date/Time Values  

To create format patterns for date and time values, you need to combine the strings listed in 
the tables below. These strings represent the year, month, day number and so on in different 
formats.  

The following table lists the most commonly used strings that can be used to format dates. 
(Samples assume that the formatted date is 9/2/2003). 

 

Symbol Meaning Value 

yy The last two digits of the year. 03 

yyyy Four digit year. 2003 

MM The number of the month. 09 

MMM The short text description of the month. Sep 

MMMM The full name of the month. September 

dd The number of the day. 02 

ddd The short text for the day of the week. Tue 



 28

dddd The full name of the day of the week. Tuesday 

/ 
Date separator. Its appearance depends upon the regional 
settings. 

 

The next table lists strings that are used to format time values. 

 

Symbol Meaning 

hh Hours. 

mm Minutes. 

ss Seconds. 

tt If present, represents data in AM/PM format.  

: Time separator. Its appearance depends upon the regional settings. 

1.8. ToolBar 

 

 

This tool bar contains buttons which provide the ability to save, load, edit report layouts in the 
End-User Designer. 

1.8.1. Save and Load to external file 

AutoCount 2006 report designer provides the ability to save and load a report's layout to 
external files. (All the bands and controls contained in a report, along with its datasource 
object and other settings).  

Once a report has been created, you're able to store it (to edit, preview and print it later). A 
report is usually saved to a file of the .art format. 

To save to a file, 

Click “File” then select “Save To File…” 



 29

 

Type the file name and click “Save” button. The file will save in .art file. 



 30

 

To load from a file, 

Click “File” then select “Load From File…”  



 31

 

Select the file with .art type file and load it with “Open” button. 



 32

 



 

1.8.2. Make Equal 

If you would like to make 
“Make Equal” then all the label will place in 

 

Note  

-mean there are overlapping between the report controls.

 

If you would like to make a few labels in equal spacing, select all the label
ual” then all the label will place in equal size. 

mean there are overlapping between the report controls. 

 

33

the labels and click the button 



 34

1.9. Report Explorer 

The Report Explorer is a helpful tool which provides easy navigation through report elements. 
You can use it when building a report to quickly access all the elements of a report and their 
properties, and to see the report's structure. Report Explorer can be moved, sized or docked in 
the same manner as other IDE windows and usually has the following look. 

 

The Report Explorer displays a created report's structure using a tree view. Report elements in 
the tree view are displayed in a vertical order which corresponds to their vertical position on 
the report. When you choose an element in the Report Explorer tree the selected report 
element receives focus, so you can edit this element and its properties. 

Usually a standard report consists of several bands containing some report controls. All child 
nodes in the tree view of the Report Explorer window are contained in their corresponding 
parent nodes . The picture below illustrates these relations. 

 

As the Report Explorer shows the report's structure, note that there are special rules for report 
building (for instance, XRControl objects should be contained in Band objects, not vice versa).  

The Report Explorer supports drag and drop. This means that items representing report 
controls can be dragged and dropped onto band items or onto XRPanel control items. The 
corresponding report control will then be moved in the report. 



 35

 

Additionally, any item in the Report Explorer tree can be right clicked to invoke the context 
menu for this report element (the same as in the report designer window). Use this menu to 
quickly perform commonly used functions for the report element. An example of this menu is 
shown in the image below. 

 

 If there are any bound controls in a report, they will be marked in the Report Explorer with 
the yellow database icon as shown in the image below. Note that when a mouse pointer hovers 
over a bound item, a tooltip displaying the binding information is shown. 



 36

 

 

 
 

 
 
 

 
 



 37

1.10. Property Grid 

This window is used to change some of the properties of the report elements (bands and 
controls). 

 

 

  



 38

1.10.1. CanGrow property 

true if the control's height can grow in order to display all its text; otherwise, false.  

When the CanGrow property is set to true the control's height will be automatically increased 
(if required) so that all the text it contains is displayed. If there are other controls below the 
given control they will be moved down to prevent them from being overlapped. 

Example: 

We take this label as example 

 

When set CanGrow to True, it is shown as below. 

 

When set CanGrow to False, it is shown as below 

 

1.10.2. CanShrink property 

true if the control's height can decrease in order to remove the unused space; otherwise, 
false.  

When the CanShrink property is set to true and the control's text doesn't completely fill the 
control, then its height will be decreased to the height of its text. If there are other controls 
below the current control they will be moved up to avoid the unused space. 

1.10.3. KeepTogether Property 

true to keep the contents of the entire control on a single page; otherwise, false. The default is 
false.  

This property is overridden to change its default value to false. 

The KeepTogether property specifies whether the contents of the control can be horizontally 
split across pages. In other words, if the contents of the control are larger than the remaining 



 

space on the page, this property specifies whether the control's contents should be split across 
the current page and the next page, or whether the control will be printed in its entirety on the 
next page. Note, that this 
current page. 

 

Note  

If the control still can't be printed in it's entirety on the next page (there isn't enough space to keep all the 
control contents together), then it will be spl

The following example demonstrates how the 
XRLabel control. 

The image below demonstrates a simple report with a label, in which the 
property is set to false. In this instance, a label is automatically split across two pages.

The next image illustrates the same label, in which 
Note that in this instance, a label is entirely moved to the next page to "keep its contents 
together". 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note  

This property is in effect when a control is split in a horizontal direction only
contents are outside the right page margin, this part will always be moved to the next page.

Band.KeepTogether 

true to keep the contents of the entire band on a single page; otherwise, 
false.  

The KeepTogether property specifies whether the contents of the band can be horizontally 
split across pages. In other words, if the content of the band is larger than the remaining space 
on the page, this property specifies whether the band's content shoul
current page and the next page, or whether the band will be printed in its entirety on the next 
page. Note, that this property is in effect only when a band's contents don't fit onto the current 

page. 

space on the page, this property specifies whether the control's contents should be split across 
the current page and the next page, or whether the control will be printed in its entirety on the 
next page. Note, that this property is in effect only when a control's contents don't fit onto the 

If the control still can't be printed in it's entirety on the next page (there isn't enough space to keep all the 
control contents together), then it will be split as though this property's value is set to 

The following example demonstrates how the KeepTogether property is in effect for an 

The image below demonstrates a simple report with a label, in which the 
. In this instance, a label is automatically split across two pages.

The next image illustrates the same label, in which the KeepTogether property is set to 
Note that in this instance, a label is entirely moved to the next page to "keep its contents 

This property is in effect when a control is split in a horizontal direction only. In a vertical direction, if a control 
contents are outside the right page margin, this part will always be moved to the next page.

to keep the contents of the entire band on a single page; otherwise, 

property specifies whether the contents of the band can be horizontally 
split across pages. In other words, if the content of the band is larger than the remaining space 
on the page, this property specifies whether the band's content should be split across the 
current page and the next page, or whether the band will be printed in its entirety on the next 
page. Note, that this property is in effect only when a band's contents don't fit onto the current 

39

space on the page, this property specifies whether the control's contents should be split across 
the current page and the next page, or whether the control will be printed in its entirety on the 

property is in effect only when a control's contents don't fit onto the 

If the control still can't be printed in it's entirety on the next page (there isn't enough space to keep all the 
it as though this property's value is set to false. 

property is in effect for an 

The image below demonstrates a simple report with a label, in which the KeepTogether 
. In this instance, a label is automatically split across two pages. 

property is set to true. 
Note that in this instance, a label is entirely moved to the next page to "keep its contents 

. In a vertical direction, if a control 
contents are outside the right page margin, this part will always be moved to the next page. 

to keep the contents of the entire band on a single page; otherwise, false. The default is 

property specifies whether the contents of the band can be horizontally 
split across pages. In other words, if the content of the band is larger than the remaining space 

d be split across the 
current page and the next page, or whether the band will be printed in its entirety on the next 
page. Note, that this property is in effect only when a band's contents don't fit onto the current 



 

 

Note  

If the band still can't be printed in it's entirety on the next page (there isn't enough space to keep all the band 
contents together), then it will be split as though this property's value is set to 

1.10.4. Report Property Grid

 

At Report Property Grid, User are able to setting 
and many other function

To go to the Report Property Grid, user can either select at 
the property grid will show the the the Report Property Grid. User are able to se
function at the property grid.
 

 

be printed in it's entirety on the next page (there isn't enough space to keep all the band 
contents together), then it will be split as though this property's value is set to false. 

Report Property Grid 

At Report Property Grid, User are able to setting the paper kind, margins, font size, landscape
function for the report. 

the Report Property Grid, user can either select at  and as shown at below, 
the property grid will show the the the Report Property Grid. User are able to se
function at the property grid. 

 

40

be printed in it's entirety on the next page (there isn't enough space to keep all the band 
 

the paper kind, margins, font size, landscape 

as shown at below, 
the property grid will show the the the Report Property Grid. User are able to select the 

 



 41

1.10.4.1. Paper Kind  

 
User are able to select the paper size needed design as over here. A lot of selection like A2, 
A3, A4, Letter, and many are available. 
 
 

 
 
If the PaperKind property is set to Custom, then the printer paper will be selected according 
to the PaperName property's value. In this case it's also necessary to set the PageWidth and 
PageHeight properties to the corresponding values of the paper selected. 
 

  



 42

1.10.4.2. Landscape 

 
User are able to set the report print as Landscape or Portrait. As default Landscape is set as 
false which mean is in Portrait mode. To set as Landscape select it as True for Landscape. 
 

 
 
 



 43

 
 
When the Landscape property value is changed, then the PageWidth and PageHeight 
properties values will be automatically swapped with each other. 
 
 

   



 44

1.10.4.3. Grid Size 

 
The GridSize default value is ‘8 , 8’, user can set the value of the GridSize to make the 
design work more easy. The smaller value can  let user easy to place the label. 
 
Below is an example that GridSize set as. 
 
   GridSize ‘8 , 8’ 
 

 
 
   GridSize ‘16 , 16’ 

 
 
User are able to make the grid into invisible mode for more easy work. Set the DrawGrid to 
false then the grid will become invisible.  

 

 



 45

1.10.4.4. Margins 

 
User are able to set the report margin by setting the value at the property grid as shown 
as below. the margins can be set is “Bottom”, “Left”,”Right” and “Top”. The margins are 
measured in report units (either in hundredths of an inch, or in tenths of a millimeter). 

 
 

 
 

1.10.4.5. Watermark 

 
A report can contain a collection of watermarks set either for all or specified report pages. 

The report’s watermark can be represented either by text or a picture. 
To edit a watermark click the button on property grid. The watermark text can be select 
or can type iby user. User also can set the font, size, color, incline, transparency and the 
text properties. Beside text picture watermark also available. 
 



 46

 
  



 47

The output of the watermark is shown as below 
 

  



 48

1.11. Calculating an Automatic Summary  

Reports also support automatic calculation of summary functions (totals, maximum, 
minimum, averages, etc.) only for Label controls (or its descendants) which are bound to data. 
At design time you can use the Summary Editor to set all the summary options in one place. 

 

The following example demonstrates how to calculate the average of the values in the Net 
Total field of the Invoice Listing. As you can see at the summary editor, we have a list of 
calculation method. But the methods that often use are the Average, Count and Sum. Let us do 
an example now, we try use average and sum. 

 

The resulting report is shown in the image below 



 49

 

1.9. Print Preview 

After you have designed your report, you can preview your report immediately. Simply click 
the “preview” at the bottom part of the design page. At print preview page, what you see is 
what you will print out. At upper part of the page is a printing toolbar, user can easy print out 
while design report. 

 
  



 

2. Master-Detail Report Using Detail Report Bands

XtraReports has a type of band that can
the purpose of creating master
which represent detail reports nested into a master report. Note that in this case the master 
and detail reports are shown in the same report designer and are 
datasource which contains a data relationship. Use detail report bands instead of subreport 
controls to create a master

2.1. Detail Report Bands

DetailReportBand objects are used in 
master-detail ADO .NET relationship. The 
and detail report to be represented in a single report class. This means that a 
has a special band that contains another
can be an unlimited number of 
of bands is colored accordingly in the 

Note  

You can add several detail rep

To add a DetailReportBand
Report item from the 
bound to the report, then the submenu will contain an item which has the name of that 

relationship. You can also add an unbound detail report and specify its main properties later 
on. 

Detail Report Using Detail Report Bands 

has a type of band that can be used to incorporate one report into another for 
the purpose of creating master-detail reports. This is done by using DetailReportBand
which represent detail reports nested into a master report. Note that in this case the master 
and detail reports are shown in the same report designer and are 
datasource which contains a data relationship. Use detail report bands instead of subreport 
controls to create a master-detail report. 

Detail Report Bands 

objects are used in XtraReports to create master-detail reports based on a 
detail ADO .NET relationship. The Detail Report bands allow both the 

to be represented in a single report class. This means that a 
has a special band that contains another report including all the detail report
can be an unlimited number of DetailReportBands nested in each other, and every new group 
of bands is colored accordingly in the report designer as shown in the image below.

detail reports at the same nesting level. 

DetailReportBand, just right-click the report designer and choose the 
item from the context menu. If an ADO .NET relationship exists in the datasource 
to the report, then the submenu will contain an item which has the name of that 

relationship. You can also add an unbound detail report and specify its main properties later 

50

be used to incorporate one report into another for 
DetailReportBand objects 

which represent detail reports nested into a master report. Note that in this case the master 
and detail reports are shown in the same report designer and are bound to the same 
datasource which contains a data relationship. Use detail report bands instead of subreport 

detail reports based on a 
allow both the master report 

to be represented in a single report class. This means that a master report 
detail report's bands. There 
her, and every new group 

as shown in the image below. 

 

click the report designer and choose the Insert Detail 
. If an ADO .NET relationship exists in the datasource 

to the report, then the submenu will contain an item which has the name of that 

relationship. You can also add an unbound detail report and specify its main properties later 



 

To bind a detail report
should be set:  

• XtraReportBase.DataSource

• XtraReportBase.DataAdapter
data for the report. Usually, it's different than the data adapter of the 

• XtraReportBase.DataMember
in the bound data source. 

The image below illustrates these properties in the VS IDE.

Note  

When using either the XtraReportBase.GetCurrentRow
detail report's event handlers, you should provide the columns' names according to the level of the detail report. Do 

not call these methods for the 

C#  

// Don't use the GetCurrentRow method in this way in a detail report.

// 

((DataRowView)GetCurrentRow()).Row["Categories.CategoriesProducts.ProductName

"].ToString(); 

 

// Get the current value of a data row

xrLabel1.Text = 

((DataRowView)DetailReport.GetCurrentRow()).Row["ProductName"].ToString();

          

// Don't use the GetCurrentColumnValue method in this way in a detail report.

 

eport to the detail data in a report's datasource the following properties 

XtraReportBase.DataSource should be set to the datasource in the 

XtraReportBase.DataAdapter should be set to the data adapter providing the 
data for the report. Usually, it's different than the data adapter of the 

aReportBase.DataMember should be set to the name of the data relationship used 
in the bound data source.  

The image below illustrates these properties in the VS IDE. 

XtraReportBase.GetCurrentRow or XtraReportBase.GetCurrentColumnValue
detail report's event handlers, you should provide the columns' names according to the level of the detail report. Do 

not call these methods for the XtraReport object itself, but for the DetailReportBand instead. For instance:

// Don't use the GetCurrentRow method in this way in a detail report.

((DataRowView)GetCurrentRow()).Row["Categories.CategoriesProducts.ProductName

// Get the current value of a data row in a detail report. 

((DataRowView)DetailReport.GetCurrentRow()).Row["ProductName"].ToString();

// Don't use the GetCurrentColumnValue method in this way in a detail report.

51

to the detail data in a report's datasource the following properties 

should be set to the datasource in the master report.  

ter providing the detail 
data for the report. Usually, it's different than the data adapter of the main report.  

should be set to the name of the data relationship used 

 

XtraReportBase.GetCurrentColumnValue methods in a 
detail report's event handlers, you should provide the columns' names according to the level of the detail report. Do 

instead. For instance: 

// Don't use the GetCurrentRow method in this way in a detail report. 

((DataRowView)GetCurrentRow()).Row["Categories.CategoriesProducts.ProductName

 

((DataRowView)DetailReport.GetCurrentRow()).Row["ProductName"].ToString(); 

// Don't use the GetCurrentColumnValue method in this way in a detail report. 



 52

// 

GetCurrentColumnValue("Categories.CategoriesProducts.ProductName").ToString()

; 

          

// Get the current value of the CategoryName data column in a detail report. 

xrLabel2.Text = DetailReport.GetCurrentColumnValue("ProductName").ToString(); 

Visual Basi

c 

 

' Don't use the GetCurrentRow method in this way in a detail report. 

' GetCurrentRow().Row("Categories.CategoriesProducts.ProductName").ToString() 

 

' Get the current value of a data row in a detail report. 

XrTableCell1.Text = 

DetailReport.GetCurrentRow().Row("ProductName").ToString() 

 

' Don't use the GetCurrentColumnValue method in this way in a detail report. 

' 

GetCurrentColumnValue("Categories.CategoriesProducts.ProductName").ToString() 

 

' Get the current value of the CategoryName data column in a detail report. 

XrTableCell2.Text = 

DetailReport.GetCurrentColumnValue("ProductName").ToString() 

2.2. Example of Master-Detail Report: Invoice 

The following illustrates the DetailReportBand and its master-detail tables. 

 
  

SubDetail 

Master 

Detail 



 53

As illustrated in the above diagram. Master table will be the primary datasource of main report, 
Detail table will be the primary datasource of DetailReportBand ppChildReport1, and SubDetail 
table will be the primary datasource of DetailReportBand DetailReport. 

Master table contains the Invoice’s master fields. 

Detail table contains the Invoice’s detail fields. 

SubDetail table contains the Invoice’s Item Package detail fields. 

  



 

3. Scripting 

The XtraReports suite provides the ability to use scripts to handle events of either report 
controls, its bands, or a report itself. Th
scripts in XtraReports, lists the main properties required for using scripts, and gives an 
example on how scripting can be used in a report. Review the 
Using Scripts topic to learn how to calculate a custom summary with scripts.

3.1. Scripting Overview 

Scripting is a runtime-only feature of 
of a report and execute them at runtime. This feature is mostly intended to be used 
customize a report. In this instance, it's intended that an you are familiar with one of the 
scripting languages supported by XtraReports.

The programming language of scripts can be different from that of the language used when 
creating the report. Though all scripts in the report must be in the same language (a report 
object only supports scripting in one language at a time), 
C#, Visual Basic .NET and JScript .NET. The scripting languages that can be used in 
XtraReports are listed by the 

 

Note  

The script language used for a report's scripts has to be supported on the client
JScript .NET isn't supported in the .NET Framework by default, it needs to b

machine before scripts in JScipt are executed.

The following is a list of the main properties which are used to implement scripting in 

XtraReports. 

 

Property

XtraReport.ScriptLanguage

XtraReport.ScriptReferences

XRControl.Scripts 

XRLabelScripts.OnSummaryReset

XRLabelScripts.OnSummaryRowChanged

XRLabelScripts.OnSummaryGetResult

suite provides the ability to use scripts to handle events of either report 
controls, its bands, or a report itself. This document describes the basic principles of using 

, lists the main properties required for using scripts, and gives an 
example on how scripting can be used in a report. Review the Calculating a Custom Summary 

learn how to calculate a custom summary with scripts.

Scripting Overview  

only feature of XtraReports. It allows you to insert scripts into the code 
of a report and execute them at runtime. This feature is mostly intended to be used 
customize a report. In this instance, it's intended that an you are familiar with one of the 
scripting languages supported by XtraReports. 

The programming language of scripts can be different from that of the language used when 
ort. Though all scripts in the report must be in the same language (a report 

object only supports scripting in one language at a time), XtraReports 
C#, Visual Basic .NET and JScript .NET. The scripting languages that can be used in 

are listed by the ScriptLanguage enumeration values. 

The script language used for a report's scripts has to be supported on the client-side. For instance, since 
JScript .NET isn't supported in the .NET Framework by default, it needs to be installed on an end

machine before scripts in JScipt are executed. 

The following is a list of the main properties which are used to implement scripting in 

Property Description

XtraReport.ScriptLanguage Specifies the scripting langu
the scripts of the XtraReport
a report's object must be in the same language. 

XtraReport.ScriptReferences Specifies the collection of strings that represent 
the full paths to the assemblies used by the 
scripts in a report. This property should be used 
when scripts include references to non
assemblies. A list and description of the standard 

assemblies is available in the 
XtraReport.ScriptReferences 

Specifies an object of the XRControlEvents

which contains the scripts used for all the 
XRControl object's events. These events are 
similar to the events of corresponding 
descendants of the XRControl

XRLabelScripts.OnSummaryReset Gets or sets the script which handles th

XRLabel.SummaryReset event when a custom 
summary is calculated.  

XRLabelScripts.OnSummaryRowChanged Gets or sets the script which handles the 

XRLabel.SummaryRowChanged
custom summary is calculated. 

XRLabelScripts.OnSummaryGetResult Gets or sets the script which handles the 

XRLabel.SummaryGetResult event when a custom 
summary is calculated.  

54

suite provides the ability to use scripts to handle events of either report 
is document describes the basic principles of using 

, lists the main properties required for using scripts, and gives an 
Calculating a Custom Summary 

learn how to calculate a custom summary with scripts. 

. It allows you to insert scripts into the code 
of a report and execute them at runtime. This feature is mostly intended to be used to slightly 
customize a report. In this instance, it's intended that an you are familiar with one of the 

The programming language of scripts can be different from that of the language used when 
ort. Though all scripts in the report must be in the same language (a report 

 supports scripting in 
C#, Visual Basic .NET and JScript .NET. The scripting languages that can be used in 

side. For instance, since 
e installed on an end-user's 

The following is a list of the main properties which are used to implement scripting in 

Description 

age used to write all 
XtraReport object. All scripts in 

a report's object must be in the same language.  

Specifies the collection of strings that represent 
the full paths to the assemblies used by the 

in a report. This property should be used 
when scripts include references to non-standard 
assemblies. A list and description of the standard 

assemblies is available in the 
topic.  

RControlEvents class 

which contains the scripts used for all the 
object's events. These events are 

similar to the events of corresponding 
XRControl class.  

Gets or sets the script which handles the 

event when a custom 

Gets or sets the script which handles the 

XRLabel.SummaryRowChanged event when a 
custom summary is calculated.  

r sets the script which handles the 

event when a custom 



 

To create any scripting in XtraReports, it's necessary to assign particular scripts to the 
appropriate properties of an object returned by the 
any of the script properties at design time, the 
any particular script defined for this property, this window will contain a code template written 
in the language defined by

The entered script will be used to handle the corresponding event of the control. Scripting 

events are raised in the same manner as ordinary event handlers. Note, that if an 
object has both a script meth
then both of them will be executed.

In XtraReports scripting is carried out in the following order:

XtraReports generates a temporary class in memory and adds the variables corresponding to 
the report object, its bands and controls. The names of the variables are defined by the 
properties of the objects they represent. 

The scripts are preprocessed. While preprocessing, the 
script code and added to the nam

After preprocessing, all the user's scripts are placed in the code of the temporary class, just 
like text. Then the resulting class is compiled in memory and when required its methods are 
called to execute the user's scripts. 

Note  

Since the scripting code placed into the temporary class can contain any code except for the 
directives, it offers a lot of possibilities: you can declare classes (they will become inner classes), declare new 

variables, methods, classes, etc. The advantage of this approach is that a variable, for instance, declared in one 
script, can be accessed in another script as it is, in fact, a variable of the temporary class.

3.2. Example. Using Scripts 

The following example demonstra
the script methods used to handle the events of the report's Detail band (changing the table 

To create any scripting in XtraReports, it's necessary to assign particular scripts to the 
properties of an object returned by the XRControl.Scripts. When you start editing 

any of the script properties at design time, the Script Editor window is invoked. If there isn't 
any particular script defined for this property, this window will contain a code template written 
in the language defined by the XtraReport.ScriptLanguage property. 

The entered script will be used to handle the corresponding event of the control. Scripting 

events are raised in the same manner as ordinary event handlers. Note, that if an 
object has both a script method and a standard event-handler method for the same event, 

of them will be executed. 

scripting is carried out in the following order: 

generates a temporary class in memory and adds the variables corresponding to 
ort object, its bands and controls. The names of the variables are defined by the 

properties of the objects they represent.  

The scripts are preprocessed. While preprocessing, the using-like directives are cut from the 
script code and added to the namespace where the temporary class is defined. 

After preprocessing, all the user's scripts are placed in the code of the temporary class, just 
like text. Then the resulting class is compiled in memory and when required its methods are 

user's scripts.  

Since the scripting code placed into the temporary class can contain any code except for the 
directives, it offers a lot of possibilities: you can declare classes (they will become inner classes), declare new 

methods, classes, etc. The advantage of this approach is that a variable, for instance, declared in one 
script, can be accessed in another script as it is, in fact, a variable of the temporary class.

Example. Using Scripts  

The following example demonstrates how scripts can be used in XtraReports
the script methods used to handle the events of the report's Detail band (changing the table 

55

To create any scripting in XtraReports, it's necessary to assign particular scripts to the 
. When you start editing 

window is invoked. If there isn't 
any particular script defined for this property, this window will contain a code template written 

 

The entered script will be used to handle the corresponding event of the control. Scripting 

events are raised in the same manner as ordinary event handlers. Note, that if an XRControl 
handler method for the same event, 

generates a temporary class in memory and adds the variables corresponding to 
ort object, its bands and controls. The names of the variables are defined by the Name 

like directives are cut from the 
espace where the temporary class is defined.  

After preprocessing, all the user's scripts are placed in the code of the temporary class, just 
like text. Then the resulting class is compiled in memory and when required its methods are 

Since the scripting code placed into the temporary class can contain any code except for the using-like 
directives, it offers a lot of possibilities: you can declare classes (they will become inner classes), declare new 

methods, classes, etc. The advantage of this approach is that a variable, for instance, declared in one 
script, can be accessed in another script as it is, in fact, a variable of the temporary class. 

XtraReports. It represents 
the script methods used to handle the events of the report's Detail band (changing the table 



 56

cells color), and events of the label (to calculate a minimum value for the data column as a 
custom summary). Note that for this example to work correctly, the application should contain 
a report object bound to the Products table in the Northwind database (nwind.mdb located in 
the demos\data directory where you installed XtraReports).  

These are the scripts used in a report: 

 

C# 

// === Detail.Scripts.OnBeforePrint === 

private void OnBeforePrint(object sender, 

System.Drawing.Printing.PrintEventArgs e) { 

   XRTableCell[] cells = new XRTableCell[] { pidCell, productNameCell, 

productPriceCell }; 

   System.Decimal price = 

(System.Decimal)GetCurrentColumnValue("UnitPrice"); 

   if (price < 20) 

      ChangeCellsColor(cells, Color.Red); 

   else if (price > 60) 

      ChangeCellsColor(cells, Color.Green); 

   else 

      ChangeCellsColor(cells, Color.Black); 

} 

void ChangeCellsColor(XRTableCell[] cells, Color color) { 

   int count = cells.Length; 

   for (int i = 0; i < count; i++) 

      cells[i].ForeColor = color; 

} 

// === Detail.Scripts.OnBeforePrint === 

// === xrLabel1.Scripts.OnSummaryReset === 

using MyAssembly; 

System.Decimal minPrice = System.Decimal.MaxValue; 

 

private void OnSummaryReset(object sender, System.EventArgs e) { 

   minPrice = System.Decimal.MaxValue; 

} 

// === xrLabel1.Scripts.OnSummaryReset === 

 

// === xrLabel1.Scripts.OnSummaryRowChanged === 

private void OnSummaryRowChanged(object sender, System.EventArgs e) { 

    minPrice = Math.Min(minPrice, 

(System.Decimal)GetCurrentColumnValue("UnitPrice")); 

} 

// === xrLabel1.Scripts.OnSummaryRowChanged === 

 

// === xrLabel1.Scripts.OnSummaryGetResult === 

private void OnSummaryGetResult(object sender, 



 57

DevExpress.XtraReports.UI.SummaryGetResultEventArgs e) { 

    e.Result = minPrice; 

    e.Handled = true; 

} 

// === xrLabel1.Scripts.OnSummaryGetResult === 

Visual Basic 

' === Detail.Scripts.OnBeforePrint === 

Private Sub OnBeforePrint(sender As Object, e As 

System.Drawing.Printing.PrintEventArgs) 

   Dim cells() As XRTableCell = {pidCell, productNameCell, 

productPriceCell} 

   Dim price As System.Decimal = GetCurrentColumnValue("UnitPrice") 

   If price < 20 Then 

      ChangeCellsColor(cells, Color.Red) 

   Else 

      If price > 60 Then 

         ChangeCellsColor(cells, Color.Green) 

      Else 

         ChangeCellsColor(cells, Color.Black) 

      End If 

   End If  

End Sub 

 

Sub ChangeCellsColor(cells() As XRTableCell, color As Color) 

   Dim count As Integer = cells.Length 

   Dim i As Integer 

   For i = 0 To count - 1 

      cells(i).ForeColor = color 

   Next i 

End Sub 

' === Detail.Scripts.OnBeforePrint === 

 

 

' === xrLabel1.Scripts.OnSummaryReset === 

Imports MyAssembly 

 

Dim minPrice As System.Decimal = System.Decimal.MaxValue 

 

Private Sub OnSummaryReset(ByVal sender As Object, ByVal e As 

System.EventArgs) 

   minPrice = System.Decimal.MaxValue 

End Sub 

' === xrLabel1.Scripts.OnSummaryReset === 



 58

 

' === xrLabel1.Scripts.OnSummaryRowChanged === 

Private Sub OnSummaryRowChanged(ByVal sender As Object, ByVal e As 

System.EventArgs) 

    minPrice = Math.Min(minPrice, GetCurrentColumnValue("UnitPrice")) 

End Sub 

' === xrLabel1.Scripts.OnSummaryRowChanged === 

 

' === xrLabel1.Scripts.OnSummaryGetResult === 

Private Sub OnSummaryGetResult(ByVal sender As Object, ByVal e As 

DevExpress.XtraReports.UI.SummaryGetResultEventArgs) 

    e.Result = minPrice 

    e.Handled = True 

End Sub 

' === xrLabel1.Scripts.OnSummaryGetResult === 

The resulting code will be a class generated in memory which will contain the following code. 
Note that this code is for internal use only, and it only demonstrates the main principles of 
using scripts in XtraReports. 

 

C# 

namespace AutogeneratedNamespace 

{ 

   using System; 

   using System.Collections; 

   using System.Drawing; 

   using DevExpress.Data; 

   using DevExpress.Utils; 

   using DevExpress.XtraPrinting; 

   using DevExpress.XtraReports; 

   using DevExpress.XtraReports.UI; 

 

   using MyAssembly; 

   // other usings 

 

   class AutogeneratedClass 

   { 

      private XRTableCell pidCell; 

      private XRTableCell productNameCell; 

      private XRTableCell productPriceCell; 

      private XtraReport XtraReport1; 

      // other variables 

 

      private void DetailOnBeforePrint(object sender, 



 59

System.Drawing.Printing.PrintEventArgs e) { 

         XRTableCell[] cells = new XRTableCell[] { pidCell, 

productNameCell, productPriceCell }; 

         System.Decimal price = 

(System.Decimal)GetCurrentColumnValue("UnitPrice"); 

         if (price < 20) 

            ChangeCellsColor(cells, Color.Red); 

         else if (price > 60) 

            ChangeCellsColor(cells, Color.Green); 

         else 

            ChangeCellsColor(cells, Color.Black); 

      } 

 

      void ChangeCellsColor(XRTableCell[] cells, Color color) { 

         int count = cells.Length; 

         for (int i = 0; i < count; i++) 

            cells[i].ForeColor = color; 

      } 

 

      System.Decimal minPrice = System.Decimal.MaxValue; 

 

      private void xrLabel1OnSummaryReset(object sender, 

System.EventArgs e) { 

         minPrice = System.Decimal.MaxValue; 

      } 

 

      private void xrLabel1OnSummaryRowChanged(object sender, 

System.EventArgs e) { 

         minPrice = Math.Min(minPrice, 

(System.Decimal)GetCurrentColumnValue("UnitPrice")); 

      } 

 

      private void xrLabel1OnSummaryGetResult(object sender, 

DevExpress.XtraReports.UI.SummaryGetResultEventArgs e) { 

         e.Result = minPrice; 

         e.Handled = true; 

      } 

   } 

} 

Visual Basic 

Namespace AutogeneratedNamespace 

 

   Imports System 

   Imports System.Collections 



 60

   Imports System.Drawing 

   Imports DevExpress.Data 

   Imports DevExpress.Utils 

   Imports DevExpress.XtraPrinting 

   Imports DevExpress.XtraReports 

   Imports DevExpress.XtraReports.UI 

 

   Imports MyAssembly 

   ' other usings 

 

   Class AutogeneratedClass 

      Private pidCell As XRTableCell 

      Private productNameCell As XRTableCell 

      Private productPriceCell As XRTableCell 

      Private XtraReport1 As XtraReport 

 

      ' other variables 

      Private Sub DetailOnBeforePrint(sender As Object, e As 

System.Drawing.Printing.PrintEventArgs) 

         Dim cells() As XRTableCell = {pidCell, productNameCell, 

productPriceCell} 

         Dim price As System.Decimal = 

GetCurrentColumnValue("UnitPrice") 

         If price < 20 Then 

            ChangeCellsColor(cells, Color.Red) 

         Else 

            If price > 60 Then 

               ChangeCellsColor(cells, Color.Green) 

            Else 

               ChangeCellsColor(cells, Color.Black) 

            End If 

         End If  

      End Sub 

 

      Sub ChangeCellsColor(cells() As XRTableCell, color As Color) 

         Dim count As Integer = cells.Length 

         Dim i As Integer 

         For i = 0 To count - 1 

            cells(i).ForeColor = color 

         Next i 

      End Sub 

 

      Private minPrice As System.Decimal = System.Decimal.MaxValue 



 61

 

      Private Sub xrLabel1OnSummaryReset(ByVal sender As Object, ByVal 

e As System.EventArgs) 

         minPrice = System.Decimal.MaxValue 

      End Sub 

 

      Private Sub xrLabel1OnSummaryRowChanged(ByVal sender As Object, 

ByVal e As System.EventArgs) 

         minPrice = Math.Min(minPrice, 

GetCurrentColumnValue("UnitPrice")) 

      End Sub 

 

      Private Sub xrLabel1OnSummaryGetResult(ByVal sender As Object, 

ByVal e As DevExpress.XtraReports.UI.SummaryGetResultEventArgs) 

         e.Result = minPrice 

         e.Handled = True 

      End Sub 

   End Class 

End Namespace 

The following image demonstrates the resulting report. Note that the scripts are processed for 
both runtime and design-time previews. 

 



 

3.3. GetCurrentColumnValue

XtraReportBase.GetCurrentColumnValue Method

Gets the current value of the specified column in the 

 Syntax  

 

Visual Basic 

Public Function GetCurrentColumnValue( 

   ByVal columnName As String 

) As Object 

C# 

public object GetCurrentColumnValue( 

   string columnName 

); 

Parameters 

columnName  

A System.String containing the name of the specified column. 

Return Value 

An object which represents the current value of the specified column in the 

datasource. 

 Remarks 

If the specified column was not found this method returns 
datasource is determined by the 

 Example 

This example demonstrates how the 
should be used for both master and detail reports. Note that for this example to work properly, 
the report should be bound

database (nwind.mdb located in the demos
and the dataset for these tables should contain the 
relationship. Then, a report should be configured as a master

 

Note  

In the code below, "DetailReport" is the name of the 
creating a master-detail report. This name may be different in another application (for instance, it may be set to 

"detailReportBand1"). 

C# 

using System.Data;

using System.Drawing.Printing;

// ... 

umnValue Method 

XtraReportBase.GetCurrentColumnValue Method 

Gets the current value of the specified column in the primary datasource

Public Function GetCurrentColumnValue(  

ByVal columnName As String  

object GetCurrentColumnValue(  

string columnName  

A System.String containing the name of the specified column.  

An object which represents the current value of the specified column in the 

If the specified column was not found this method returns null .The report's 
is determined by the DataSource property. 

This example demonstrates how the GetCurrentRow and GetCurrentColumnValue
th master and detail reports. Note that for this example to work properly, 
bound to the Categories and Products tables in the de

located in the demos\data directory where you installed 
and the dataset for these tables should contain the CategoriesProducts
relationship. Then, a report should be configured as a master-detail report. 

In the code below, "DetailReport" is the name of the DetailReportBand instance, which should be created when 
detail report. This name may be different in another application (for instance, it may be set to 

using System.Data; 

using System.Drawing.Printing; 

62

primary datasource.  

An object which represents the current value of the specified column in the primary 

.The report's primary 

GetCurrentColumnValue methods 
th master and detail reports. Note that for this example to work properly, 

tables in the demo Northwind 

data directory where you installed XtraReports), 
CategoriesProducts master-detail 

report.  

instance, which should be created when 
detail report. This name may be different in another application (for instance, it may be set to 



 63

 

private void Detail_BeforePrint(object sender, PrintEventArgs e) { 

   // Get the value of the current row in the master report. 

   xrLabel1.Text = 

((DataRowView)GetCurrentRow()).Row["CategoryName"].ToString(); 

 

   // Get the value of the current cell in the CategoryName column in 

the master report. 

   xrLabel2.Text = GetCurrentColumnValue("CategoryName").ToString(); 

} 

 

private void Detail1_BeforePrint(object sender, PrintEventArgs e) { 

   // You shouldn't use the GetCurrentRow method in this way in a 

detail report. 

   // 

((DataRowView)GetCurrentRow()).Row["Categories.CategoriesProducts.ProductN

ame"].ToString(); 

 

   // Get the value of the current row in the detail report. 

   xrLabel3.Text = 

((DataRowView)DetailReport.GetCurrentRow()).Row["ProductName"].ToString(); 

          

   // You shouldn't use the GetCurrentColumnValue method in this way 

in a detail report. 

   // 

GetCurrentColumnValue("Categories.CategoriesProducts.ProductName").ToStrin

g(); 

          

   // Get the current value of the CategoryName data column in a 

detail report. 

   xrLabel4.Text = 

DetailReport.GetCurrentColumnValue("ProductName").ToString(); 

} 

Visual Basic 

Imports System.Data 

Imports System.Drawing.Printing 

' ... 

 

Private Sub Detail_BeforePrint(ByVal sender As Object, ByVal e As 

PrintEventArgs) Handles Detail.BeforePrint 

   ' Get the value of the current row in the master report. 

   XrTableCell1.Text = GetCurrentRow().Row("CategoryName").ToString() 

  

  ' Get the value of the current cell in the CategoryName column in 

the master report. 

   XrTableCell2.Text = 

GetCurrentColumnValue("CategoryName").ToString() 



 64

End Sub 

 

Private Sub Detail1_BeforePrint(ByVal sender As Object, ByVal e As 

PrintEventArgs) Handles Detail1.BeforePrint 

   ' You shouldn't use the GetCurrentRow method in this way in a 

detail report. 

   ' 

GetCurrentRow().Row("Categories.CategoriesProducts.ProductName").ToString(

) 

 

   ' Get the value of the current row in the detail report. 

   XrTableCell3.Text = 

DetailReport.GetCurrentRow().Row("ProductName").ToString() 

 

   ' You shouldn't use the GetCurrentColumnValue method in this way in 

a detail report. 

   ' 

GetCurrentColumnValue("Categories.CategoriesProducts.ProductName").ToStrin

g() 

 

   ' Get the value of the current cell in the CategoryName column in 

the detail report. 

   XrTableCell4.Text = 

DetailReport.GetCurrentColumnValue("ProductName").ToString() 

End Sub 

 



 

3.4. GetCurrentRow Method

XtraReportBase.GetCurrentRow Method

Gets the current row in the 

 Syntax  

Visual Basic 

Public Function GetCurrentRow() As Object

C# 

public object GetCurrentRow();

Return Value 

If the primary datasource
will be an object of the System.Data.DataR
implementing the System.Collections.IList interface the return value will be an item from the 
collection represented by this object.

 Remarks 

The report's primary datasource

 Example 

This example demonstrates how the 
should be used for both master and detail reports. Note that for this example to work properly, 
the report should be bound
database (nwind.mdb located in the demos
and the dataset for these tables should contain the 
relationship. Then, a report should be configured as a

 

Note  

In the code below, "DetailReport" is the name of the 
when creating a master-detail report. This name may be different in another application (for instance, it may be 

set to "detailReportBand1").

C# 

using System.Data;

using System.Drawing.Printing;

// ... 

 

private void Detail_BeforePrint(object sender, PrintEventArgs e) {

   // Get the value of the current row in the master report.

   xrLabel1.Text = 

((DataRowView)GetCurrent

 

   // Get the value of the current cell in the CategoryName column in 

the master report. 

Method 

XtraReportBase.GetCurrentRow Method 

Gets the current row in the primary datasource.  

Public Function GetCurrentRow() As Object 

public object GetCurrentRow(); 

primary datasource is represented by a System.Data.DataTable object the return value 
will be an object of the System.Data.DataRowView class. If it's represented by an object 
implementing the System.Collections.IList interface the return value will be an item from the 
collection represented by this object. 

primary datasource is determined by the DataSource property.

This example demonstrates how the GetCurrentRow and GetCurrentColumnValue
should be used for both master and detail reports. Note that for this example to work properly, 

bound to the Categories and Products tables in the demo Northwind 
located in the demos\data directory where you installed 

and the dataset for these tables should contain the CategoriesProducts
relationship. Then, a report should be configured as a master-detail report.

In the code below, "DetailReport" is the name of the DetailReportBand instance, which should be created 
detail report. This name may be different in another application (for instance, it may be 

"detailReportBand1"). 

using System.Data; 

using System.Drawing.Printing; 

private void Detail_BeforePrint(object sender, PrintEventArgs e) {

// Get the value of the current row in the master report.

xrLabel1.Text = 

((DataRowView)GetCurrentRow()).Row["CategoryName"].ToString();

// Get the value of the current cell in the CategoryName column in 

 

65

is represented by a System.Data.DataTable object the return value 
owView class. If it's represented by an object 

implementing the System.Collections.IList interface the return value will be an item from the 

operty. 

GetCurrentColumnValue methods 
should be used for both master and detail reports. Note that for this example to work properly, 

bles in the demo Northwind 
data directory where you installed XtraReports), 

CategoriesProducts master-detail 
detail report. 

instance, which should be created 
detail report. This name may be different in another application (for instance, it may be 

private void Detail_BeforePrint(object sender, PrintEventArgs e) { 

// Get the value of the current row in the master report. 

Row()).Row["CategoryName"].ToString(); 

// Get the value of the current cell in the CategoryName column in 



 66

   xrLabel2.Text = GetCurrentColumnValue("CategoryName").ToString(); 

} 

 

private void Detail1_BeforePrint(object sender, PrintEventArgs e) { 

   // You shouldn't use the GetCurrentRow method in this way in a 

detail report. 

   // 

((DataRowView)GetCurrentRow()).Row["Categories.CategoriesProducts.ProductN

ame"].ToString(); 

 

   // Get the value of the current row in the detail report. 

   xrLabel3.Text = 

((DataRowView)DetailReport.GetCurrentRow()).Row["ProductName"].ToString(); 

          

   // You shouldn't use the GetCurrentColumnValue method in this way in 

a detail report. 

   // 

GetCurrentColumnValue("Categories.CategoriesProducts.ProductName").ToStrin

g(); 

          

   // Get the current value of the CategoryName data column in a detail 

report. 

   xrLabel4.Text = 

DetailReport.GetCurrentColumnValue("ProductName").ToString(); 

} 

Visual Basic 

Imports System.Data 

Imports System.Drawing.Printing 

' ... 

 

Private Sub Detail_BeforePrint(ByVal sender As Object, ByVal e As 

PrintEventArgs) Handles Detail.BeforePrint 

   ' Get the value of the current row in the master report. 

   XrTableCell1.Text = GetCurrentRow().Row("CategoryName").ToString() 

  

  ' Get the value of the current cell in the CategoryName column in the 

master report. 

   XrTableCell2.Text = GetCurrentColumnValue("CategoryName").ToString() 

End Sub 

 

Private Sub Detail1_BeforePrint(ByVal sender As Object, ByVal e As 

PrintEventArgs) Handles Detail1.BeforePrint 

   ' You shouldn't use the GetCurrentRow method in this way in a detail 

report. 

   ' 

GetCurrentRow().Row("Categories.CategoriesProducts.ProductName").ToString() 

 

   ' Get the value of the current row in the detail report. 

   XrTableCell3.Text = 



 67

DetailReport.GetCurrentRow().Row("ProductName").ToString() 

 

   ' You shouldn't use the GetCurrentColumnValue method in this way in a 

detail report. 

   ' 

GetCurrentColumnValue("Categories.CategoriesProducts.ProductName").ToString() 

 

   ' Get the value of the current cell in the CategoryName column in the 

detail report. 

   XrTableCell4.Text = 

DetailReport.GetCurrentColumnValue("ProductName").ToString() 

End Sub 

3.5. Useful static methods in BCE.AutoCount.Application class 

The following table lists out some of the useful static methods in BCE.AutoCount.Application 
class. 

 

Method Description 

FormatQuantity Format a decimal according to system defined quantity decimal. 

Sample Code: 
 

decimal qty = 123;  

xrLabel.Text = BCE.AutoCount.Application.FormatQuantity(qty); 

 

FormatPrice Format a decimal according to system defined price decimal. 

Sample Code: 
 

decimal price = 123.56;  

xrLabel.Text = BCE.AutoCount.Application.FormatPrice(price); 

 

FormatCurrency Format a decimal according to system defined currency decimal. 

Sample Code: 
 

decimal subTotal = 133.26; 

xrLabel.Text = BCE.AutoCount.Application.FormatCurrency(subTotal); 

 

RoundQuantity Round a decimal or object according to system defined quantity 

decimal. 

Sample Code: 
 

object obj = GetCurrentColumnValue(“Qty”); 

decimal qty = BCE.AutoCount.Application.RoundQuantity(obj); 

 

RoundPrice Round a decimal or object according to system defined price decimal. 

Sample Code: 
 

object obj = GetCurrentColumnValue(“UnitPrice”); 

decimal unitPrice = BCE.AutoCount.Application.RoundPrice(obj); 

 

RoundCurrency Round a decimal or object according to system defined currency 

decimal. 

Sample Code: 
 

object obj = GetCurrentColumnValue(“SubTotal”); 

decimal subTotal = BCE.AutoCount.Application.RoundCurrency(obj); 



 68

3.6. Useful data access methods in BCE.AutoCount.Application.DBSetting object 

The following table lists out some of the useful methods in 
BCE.AutoCount.Application.DBSetting object. 

3.6.1. ExecuteScalar Method 

BCE.AutoCount.Application.DBSetting.ExecuteScalar Method 

Executes the query, and returns the first column of the first row in the result set returned by 
the query. Additional columns or rows are ignored.  

 Syntax  

C# 

public object BCE.AutoCount.Application.DBSetting.ExecuteScalar(string 

sql, params SqlParameter[] sqlParams)); 

Return Value 

The first column of the first row in the result set, or a null reference (Nothing in Visual Basic) 

if the result set is empty. 

3.6.2. ExecuteNonQuery Method 

BCE.AutoCount.Application.DBSetting.ExecuteNonQuery Method 

Executes a Transact-SQL statement against the connection and returns the number of rows 
affected. 

 Syntax  

C# 

public int BCE.AutoCount.Application.DBSetting.ExecuteNonQuery(string 

sql, params SqlParameter[] sqlParams)); 

Return Value 

The number of rows affected. 

3.6.3. GetFirstDataRow Method 

BCE.AutoCount.Application.DBSetting.GetFirstDataRow Method 

Executes the query, and returns the first row in the result set returned by the query. Additional 
rows are ignored. 

 Syntax  

C# 

public DataRow 

BCE.AutoCount.Application.DBSetting.GetFirstDataRow(string sql, params 

SqlParameter[] sqlParams)); 

Return Value 



 69

The first row of the result set. 

3.6.4. GetDataTable Method 

BCE.AutoCount.Application.DBSetting.GetDataTable Method 

Executes the query, and returns the result set returned by the query in a DataTable object. 

 Syntax  

C# 

public DataTable 

BCE.AutoCount.Application.DBSetting.GetDataTable(string sql, bool 

loadSchema, params SqlParameter[] sqlParams)); 

Return Value 

A DataTable object. 

3.7. Example 1: Using Scripts to show simple Item Count in Invoice 

The following example demonstrates how scripts can be used to show simple Item Count in 
Invoice. 

 

 

C#     ppGroupHeaderBand.OnBeforePrint 

int detailCount;  

private void OnBeforePrint(object sender, 

System.Drawing.Printing.PrintEventArgs e)  

{ 

  detailCount = 0;   

} 

 

C#     ppDetailBand1.OnBeforePrint 

ppGroupHeaderBand.OnBeforePrint 

ppDetailBand1.OnBeforePrint 



 70

private void OnBeforePrint(object sender, 

System.Drawing.Printing.PrintEventArgs e)  

{ 

  detailCount++; 

  DBCalc1.Text = detailCount.ToString(); 

} 

In ppGroupHeaderBand.DoBeforePrint event, we declare a variable detailCount, and we reset it 
to 0 in the OnBeforePrint event, this is necessary because the GroupHeaderBand here is to 
control different invoices, so when start a new invoice, we must reset the detailCount to 1. 

In ppDetailBand1.OnBeforePrint event, we increment the detailCount by 1, and then assign its 
value to DBCalc1.Text property. 

Preview result: 

 

3.8. Example 2: Using Scripts to show Stock Adjustment Quantity in a separate 

column in Stock Card Report 

The following example demonstrates how scripts can be used to show Stock Adjustment 
Quantity in a separate column in Stock Card Report. 

 

 

Detail1.OnBeforePrint 



 71

 

C#     Detail1.OnBeforePrint 

private void OnBeforePrint(object sender, 

System.Drawing.Printing.PrintEventArgs e)  

{ 

  object obj = DetailReport.GetCurrentColumnValue("DocType"); 

  if (obj == null) return; 

  string docType = obj.ToString(); 

  decimal inQty = 

BCE.AutoCount.Application.RoundQuantity(DetailReport.GetCurrentColumnValue

("InQty")); 

  decimal outQty = 

BCE.AutoCount.Application.RoundQuantity(DetailReport.GetCurrentColumnValue

("OutQty")); 

  decimal inOutQty = inQty + outQty; 

  if (docType == "SA") 

  { 

    xrAdjQty.Text = BCE.AutoCount.Application.FormatQuantity(inOutQty); 

    xrInQty.Text = ""; 

    xrOutQty.Text = ""; 

  } 

  else 

  { 

    if (inOutQty > 0) 

    { 

      xrInQty.Text = BCE.AutoCount.Application.FormatQuantity(inOutQty); 

      xrOutQty.Text = ""; 

    } 

    else if (inOutQty < 0) 

    { 

      xrInQty.Text = ""; 

      xrOutQty.Text = BCE.AutoCount.Application.FormatQuantity(-

inOutQty); 

    } 

    else 

    { 

      xrInQty.Text = ""; 

      xrOutQty.Text = ""; 

    } 

    xrAdjQty.Text = ""; 

  } 

  decimal balQty = 

BCE.AutoCount.Application.RoundQuantity(DetailReport.GetCurrentColumnValue

("Balance")); 

  if (balQty < 0) 



 72

    xrBalQty.ForeColor = Color.Red; 

  else 

    xrBalQty.ForeColor = Color.Black; 

} 

The above script will extract the InOutQty from current DataRow, if current DataRow is of 
Stock Adjustment Type, then it will assign the InOutQty directly to the xrAdjQty label, 
otherwise, it will assign the InOutQty to xrInQty or xrOutQty label, depends on the sign of the 
InOutQty. At the final section of the script, it checks the BalQty of current DataRow, if it is 
negative, it will set the xrBalQty label text color to red color. 

Preview result: 

 

3.9. Example 3: Using Scripts to show Stock Item Picture in Invoice 

The following example demonstrates how scripts can be used to show Stock Item Picture in 
Invoice Report. 

 

 

 

 

xrPictureBox.OnBeforePrint 



 73

C#     xrPictureBox.OnBeforePrint 

private void OnBeforePrint(object sender, 

System.Drawing.Printing.PrintEventArgs e)  

{ 

  string imageFileName = 

ppChildReport1.GetCurrentColumnValue("ImageFileName").ToString(); 

 

  try 

  { 

    if (imageFileName.Length > 0 && 

System.IO.File.Exists(imageFileName)) 

    { 

      System.Drawing.Image image = 

System.Drawing.Image.FromFile(imageFileName); 

 

      xrPictureBox.Size = new System.Drawing.Size(256, 256); 

      xrPictureBox.Image = image; 

      xrPictureBox.Visible = true; 

    } 

    else 

    { 

      xrPictureBox.Visible = false; 

      xrPictureBox.Size = new System.Drawing.Size(0, 0); 

      ppDetailBand1.Height = 0; 

    } 

  } 

  catch  

  {  

      xrPictureBox.Visible = false; 

      xrPictureBox.Size = new System.Drawing.Size(0, 0); 

      ppDetailBand1.Height = 0; 

  } 

} 

The above script will extract the ImageFileName property of Invoice Detail, and check whether 
the image file is exist or not, if it it exist, then it will load the image file into a 

System.Drawing.Image object, and then assign this object to xrPictureBox.Image. If the image 
file is not found or error occurs during loading, it will set the size of the xrPictureBox to 0, and 
minimize the height of the ppDetailBand1. 

Preview result: 



 74

 

3.10.  Example 4: Using Scripts to show an UDF from D/O in Stock Card Report 

The following example demonstrates how scripts can be used to show an UDF from D/O in 
Stock Card Report. 

 

 
 

C#     Detail1.OnBeforePrint 

private void OnBeforePrint(object sender, 

System.Drawing.Printing.PrintEventArgs e)  

{ 

  xrRemark.Text = ""; 

  object obj = DetailReport.GetCurrentColumnValue("DocType"); 

  if (obj == null) return; 

 

  string docType = obj.ToString(); 

xrRemark.OnBeforePrint 



 75

 

  if (docType == "DO") 

  { 

    obj = DetailReport.GetCurrentColumnValue("DtlKey"); 

    string dtlKey = obj.ToString(); 

 

    obj = BCE.AutoCount.Application.DBSetting.ExecuteScalar("SELECT 

UDF_Remark FROM DODTL WHERE DtlKey=" + dtlKey); 

    if (obj != null) 

      xrRemark.Text = obj.ToString(); 

  } 

} 

The above script will get the value of the DocType column from current DataRow, if the value is 
equal to DO, then it will get the value of the DtlKey column from current DataRow, then it will 
execute a SQL statement to get the UDF_Remark column from DODTL table, then assign the 

value to xrRemark.Text property. 

Preview result: 

 

See the red box value. 

 



 76

4. How To 

4.1. How to make Panasonic KX-P1121 printer able to print to the margin 

area? 

Just install Epson LQ850 printer driver will do. Epson LQ850 printer driver is fully compatible 
with Panasonic KX-P1121 printer. 

4.2. How to make Panasonic KX-P3624 printer able to print to the margin 

area? 

Just install Epson LQ2500 printer driver will do. Epson LQ2500 printer driver is fully compatible 
with Panasonic KX-P3624 printer. 

4.3. How to print custom paper size report? 

To print a custom paper size report such as half letter size payment voucher or receipt 
voucher, it requires a bit trick, please complete the following 3 steps. 

4.3.1. Create a custom Report Form 

To create a custom report form, please follow the steps below: 

1. Open windows Report and Faxes folder, then choose File | Server Properties. 

 



 77

 

2. Then click on Create a new form. 

3. Then enter your Form name, and Form measurements, like Width and Height. 

4. Then click Save Form to save it. 

4.3.2. Modify AutoCount 2006 Report Paper Size 

To create a custom report form, please follow the steps below: 

1. Please refer to 2.7.4 on how to set your report as a custom paper size. The paper size 
must same as defined in previous section. 

4.3.3. Set Custom Paper Name in Report Option 

The last step is to set the Custom Paper Name in Report Option to the Form Name as defined 
in 5.1.1. 

1. Go to your report form, click on the Report menu, choose Report Option. 



 78

 

2. In the Report Option window, enter your Custom Paper Name, in the above example, it is 
Half-Letter. 

 



 79

 

 


